METAL-ORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 1075-1077

Tris(piperazinium) Octamolybdate, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$

William T. A. Harrison, Laurie L. Dussack and Allan J. Jacobson
Department of Chemistry, University of Houston, Houston. TX 77204-5641, USA. E-mail: harrison@madmax.chem.uh. edu

(Received 14 July 1995; accepted 17 November 1995)

Abstract

The hydrothermal synthesis and single-crystal structure of tris(piperazinediium) octamolybdate are reported. $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ contains infinite chains of $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]^{6-}$ anions, fused together by linear Mo-OMo bonds. A network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the doubly protonated piperazinium dications to the anionic octamolybdate chains.

Comment

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ is another example of a phase built up from infinite chains of linked anionic octamolybdate clusters, $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]^{6-}$, fused together by Mo-O-Mo bonds, as was previously observed for the phase $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Böschen, Buss \& Krebs, 1974). The structural building unit in $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ is a zigzag double chain of edgesharing MoO_{6} octahedra (Fig. 1). Mo-Mo separations for the various edge-sharing octahedra in the cluster range from 3.2379 (3) to 3.5176 (3) \AA. The only vertexsharing octahedral link is between adjacent clusters, via $\mathrm{O}(1)$. The anionic chains propagate in the b unit-cell direction.

The $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ unit in $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ has inversion symmetry about its center (Fig. 1) and about the $\mathrm{O}(1)$ atom linking clusters together; it comprises four crystallographically distinct Mo atoms and 14 distinct O atoms. All four of the Mo centers display typical distorted octahedral coordination to their $\mathrm{O}-\mathrm{atom}$ neighbors, with two short ($d<1.76 \AA$) 'molybdyl' $\mathrm{Mo}=\mathrm{O}$ bonds in cis configuration, each of which is trans to a long ($d>2.11 \AA$) Mo-O link. Two intermediatelength Mo-O bonds complete the two short + two intermediate + two long MoO_{6} coordination environment, which is typical for molybdenum(VI) (Kunz \& Brown, 1995). Bond-valence sum (BVS) calculations (Brese \& O'Keeffe, 1991) support this valence assignment: values of $\operatorname{BVS}[\mathrm{Mo}(1)]=6.03, \mathrm{BVS}[\mathrm{Mo}(2)]=$

Fig. 1. View of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ cluster unit in $\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{12}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ showing the atom-labelling scheme (50% probability ellipsoids). $\mathrm{N} \cdots \mathrm{O}$ hydrogen-bonding contacts are indicated by thin lines.
5.98, $\operatorname{BVS}[\mathrm{Mo}(3)]=5.95$ and $\operatorname{BVS}[\operatorname{Mo}(4)]=6.02$ are obtained, compared with the expected value of 6.00 for $\mathrm{Mo}^{\mathrm{V} 1}$.
The O atoms in the cluster divide into the following groups: $\mathrm{O}(1)$ occupies a special position (site symmetry 1) and forms a linear $\mathrm{Mo}(1)-\mathrm{O}(1)-\mathrm{Mo}(1)$ bond as the inter-cluster linking atom; $\mathrm{O}(5), \mathrm{O}(6), \mathrm{O}(8), \mathrm{O}(10)$, $\mathrm{O}(12), \mathrm{O}(13)$ and $\mathrm{O}(14)$ are bonded only to their Moatom neighbor; $\mathrm{O}(11)$ makes a short molybdyl bond to Mo(4), but also makes a long link to a second Mo atom [Mo(2)]; O(4) and O(9) participate in MoO -Mo bridges; $\mathrm{O}(2)$ and $\mathrm{O}(3)$ make bonds to three Mo-atom neighbors in approximate T-shaped geometry; $\mathrm{O}(7)$ bonds to four Mo atoms, in distorted pyramidal coordination.

The two distinct piperazinium centers (1.5 molecules in the asymmetric unit) in $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ adopt typical chair geometries, and the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths are unexceptional. The three distinct N atoms are all doubly protonated, and all six $\mathrm{N}-\mathrm{H}$ bonds are involved in hydrogen-bonding links $[d(\mathrm{O} \cdots \mathrm{H})<1.9 \AA$] to six of the 14 O atoms belonging to the $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ cluster. Four of these O atoms are $\mathrm{Mo}=\mathrm{O}$ species, one is a Mo-O-Mo bridging atom, and one is a triply bridging atom (Table 2).

The $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]^{6-}$ cluster in $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ is essentially isostructural with the similar unit in $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Böschen et al., 1974). In both phases, the $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ clusters have inversion symmetry, and are fused by a linear Mo-O-Mo bridge (Fig. 2). The hydrogen-bonding scheme in $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is complex, and probably involves interactions between ammonium cations and wa-

Fig. 2. Polyhedral view down [100] of the octamolybdate chains in $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$. The chains propagate in the [010] direction.
ter molecules, as well as ammonium-cluster links. The relationship between the $\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]_{n}^{6-}$ chain and other polymolybdate clusters and chain anions has been discussed previously (Böschen et al., 1974).

Thermogravimetric analysis (TGA) of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}{ }^{-}$ [$\mathrm{Mo}_{8} \mathrm{O}_{27}$] (DuPont 9900 system; ramp at $10 \mathrm{~K} \mathrm{~min}^{-1}$ to 873 K under oxygen) showed a two-step 21.7% weight loss over the temperature range $623-673 \mathrm{~K}$. Xray powder diffraction on the post-TGA residue gave a clean orthorhombic MoO_{3} pattern [predicted weight decrease for nominal loss of three piperazine molecules and three water molecules from $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]=$ 21.3\%].

The IR spectrum (Galaxy FTIR 5000 series spectrometer; KBr pellet method) of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ shows a broad multi-band feature at $3000-2400 \mathrm{~cm}^{-1}$, which may be correlated with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ stretches. $\mathrm{H}-$ $\mathrm{N}-\mathrm{H}\left(1605\right.$ and $1454 \mathrm{~cm}^{-1}$) and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ (1423 and $1317 \mathrm{~cm}^{-1}$) bending modes are visible, and characteristic MoO_{6} modes occur at 941,856 , and $690 \mathrm{~cm}^{-1}$.

Experimental

Purple to pink crystals $(0.1-0.2 \mathrm{~mm})$ of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$ were prepared from a mixture of $0.241 \mathrm{~g}(2.8 \mathrm{mmol})$ of piperazine and $0.6 \mathrm{~g}(4.2 \mathrm{mmol})$ of MoO_{3} in 8 ml of $\mathrm{H}_{2} \mathrm{O}$ (i.e. 2:3 piperazine: MoO_{3}). The reactants were sealed in a 23 ml capacity Parr hydrothermal bomb and heated to 453 K for 3 d . Slow cooling over 24 h and product recovery by vacuum filtration (filtrate pH 6.8) resulted in a 62% yield (based on Mo) of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$. Similar reactions carried out at the product stoichiometric ratio ($3: 8$ piperazine: MoO_{3}) resulted in a mixture of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right], \mathrm{MoO}_{3}$ and unidentified white fibrous phase(s) (filtrate pH 5.4).

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right]$
$M_{r}=1463.96$
Triclinic
$P \overline{1}$
$a=8.802(6) \AA$
$b=9.517(5) \AA$
$c=10.989(8) \AA$
$\alpha=100.15(5)^{\circ}$
$\beta=106.51(6)^{\circ}$
$\gamma=101.75(5)^{\circ}$
$V=837(1) \AA^{3}$
$Z=1$
$D_{s}=2.952 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
automated diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scans (Enraf-Nonius, 1989)
$T_{\text {min }}=0.456, \quad T_{\text {max }}=$ 0.562

7313 measured reflections
4812 independent reflections
4812 observed reflections
[$I>0$]

Refinement

Refinement on F
$R=0.033$
$n \cdot R=0.026$
$S=1.03$
4812 reflections 243 parameters
H atoms: see below
Tukey-Prince weighting scheme, fitted using a 3-term Chebychev polynomial (Carruthers \& Watkin, 1979)

Mo $K a$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=6-14^{\circ}$
$\mu=2.98 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular lump
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$
Slight purple tint
$R_{\text {m1 }}=0.018$
$\theta_{\text {max }}=30^{\circ}$
$h=-12 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=0 \rightarrow 15$
3 standard reflections frequency: 10000 s intensity decay: none

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i i} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	3	こ	$U_{\text {eq }}$
Mo(1)	-0.05994 (3)	0.62675 (2)	0.12183 (2)	0.0082
$\mathrm{Mo}(2)$	0.28198 (3)	1.22728 (2)	0.18752 (2)	0.0080
Mor(3)	0.12764 (3)	0.96196 (2)	0.30920 (2)	0.0086
Mo(4)	-0.10703 (3)	1.12728 (2)	0.02054 (2)	0.0072
$\mathrm{O}(1)$	0	1/2	0	0.0156
O(2)	0.1281 (2)	$1.2558(2)$	$0.0360(2)$	0.0096
O(3)	$0.1524(2)$	0.8022 (2)	0.1375 (2)	0.0094
$\mathrm{O}(4)$	-0.0755 (3)	0.8121 (2)	0.23 .44 (2)	0.0110
O(5)	0.0428 (3)	0.5750 (2)	0.2566 (2)	0.0174
$O(6)$	-0.2639 (3)	0.5415 (2)	0.0855 (2)	0.0160
$\mathrm{O}(7)$	0.0410 (2)	1.0465 (2)	0.1319 (2)	0.0100
$\mathrm{O}(8)$	0.2570) (3)	1.3570 (2)	0.3078 (2)	0.0182
O(9)	0.3212 (3)	1.0884 (2)	0.2944 (2)	0.0128
O(I))	0.4714 (3)	1.3035 (3)	0.1817 (2)	0.0180
O(11)	0.2812 (3)	1.0248 (2)	0.0352 (2)	0.0127
O(12)	0.2348 (3)	0.8866 (2)	0.4258 (2)	0.0161
$\mathrm{O}(13)$	0.0601 (3)	1.0900 (2)	0.3980(2)	0.0156

$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.8 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.2 \mathrm{e}^{\AA^{-3}}$
Extinction correction: Larson (1970)
Extinction coefficient: 7.3 (3)
Atomic scattering factors from International Tables for X-ray Crystallography
(1974. Vol. IV, Table 2.2B)

$\mathrm{O}(14)$	$-0.1538(3)$	$1.2489(2)$	$0.1274(2)$	0.0162
$\mathrm{~N}(1)$	$0.6914(3)$	$0.9012(3)$	$0.3365(3)$	0.0172
$\mathrm{~N}(1)$	$0.4179(3)$	$0.6941(3)$	$0.1357(3)$	0.0203
$\mathrm{~N}(3)$	$0.0171(4)$	$0.3785(3)$	$0.4132(3)$	0.0167
$\mathrm{C}(1)$	$0.6052(4)$	$0.9448(3)$	$0.2181(3)$	0.0182
$\mathrm{C}(1)$	$0.5747(4)$	$0.7898(4)$	$0.3699(3)$	0.02200
$\mathrm{C}(3)$	$0.5329(4)$	$0.8089(4)$	$0.1042(3)$	0.0204
$\mathrm{C}(4)$	$0.4974(4)$	$0.6536(4)$	$0.2567(4)$	0.0209
$\mathrm{C}(5)$	$0.1503(4)$	$0.4563(4)$	$0.5383(3)$	0.0208
$\mathrm{C}(6)$	$-0.1484(4)$	$0.3838(4)$	$0.4212(4)$	0.0228

Table 2. Selected interatomic distances (\AA)

$\mathrm{Mo}(1)-\mathrm{O}(1)$	1.9022 (2)	$\mathrm{Mo}(3)-\mathrm{O}(13)$	1.7 .31 (2)
$\mathrm{Mo}(1)-\mathrm{O}\left(2^{1}\right)$	2.232 (2)	$\mathrm{Mo}(4)-\mathrm{O}(2)$	2.122 (2)
$\mathrm{Mo(1)-O}(3)$	2.181 (2)	$\mathrm{Mo}(4)-\mathrm{O}\left(3^{\prime}\right)$	1.938 (2)
$\mathrm{Mo}(1)-\mathrm{O}(4)$	2.022 (2)	$\mathrm{Mo}(4)-\mathrm{O}(7)$	1.903 (2)
$\mathrm{Mo}(1)-\mathrm{O}(5)$	1.712 (2)	$\mathrm{Mo}(4)-\mathrm{O}\left(7^{\prime}\right)$	2.419 (2)
$\mathrm{Mo}(1)-\mathrm{O}(6)$	1.711(2)	$\mathrm{Mo}(4)-\mathrm{O}\left(11^{1}\right)$	1.753 (2)
$\mathrm{Mo}(2)-\mathrm{O}(2)$	1.926 (2)	$\mathrm{Mo}(4)-\mathrm{O}(14)$	1.696 (2)
$\mathrm{Mo}(2)-\mathrm{O}(7)$	2.289 (2)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.483 (4)
$\mathrm{Mo}(2)-\mathrm{O}(8)$	1.716 (2)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.490 (4)
$\mathrm{Mo}(2)-\mathrm{O}(9)$	$1.936(2)$	$N(2)-\mathrm{C}(3)$	1.490)(5)
$\mathrm{Mo}(2)-\mathrm{O}(10)$	$1.702(2)$	$N(2)-\mathrm{C}(4)$	1.473 (5)
$\mathrm{Mo}(2)-\mathrm{O}(11)$	2.317 (2)	$N(3)-\mathrm{C}(5)$	1.478 (4)
$\mathrm{Mo}(3)-\mathrm{O}(3)$	2.298 (2)	$N(3)-\mathrm{C}(6)$	1.494 (4)
$\mathrm{Mo}(3)-\mathrm{O}(4)$	1.903 (2)	$C(1)-C(3)$	1.512 (5)
$\mathrm{Mo}(3)-\mathrm{O}(7)$	2.233 (2)	$\mathrm{C}(2)-\mathrm{C}(4)$	1.510 (5)
$\mathrm{Mo}(3)-\mathrm{O}(9)$	1.941 (2)	$\mathrm{C}(5)-\mathrm{C}\left(6^{\prime \prime}\right)$	1.514 (5)
$\mathrm{Mo}(3)-\mathrm{O}(12)$	1.720)(2)		

Table 3. Hydrogen-bonding geometry (\AA)

$\mathrm{N}(2) \cdots \mathrm{O}(3)$	$2.741(3)$	$\mathrm{N}(2) \cdots \mathrm{O}\left(6^{11}\right)$	$2.783(4)$
$\mathrm{N}(1) \cdots \mathrm{O}\left(4^{\prime}\right)$	$2.805(3)$	$\mathrm{N}(1) \cdots \mathrm{O}\left(12^{111}\right)$	$2.823(3)$
$\mathrm{N}(3) \cdots \mathrm{O}(5)$	$2.775(3)$	$\mathrm{N}(3) \cdots \mathrm{O}\left(13^{\prime \prime}\right)$	$2.829(3)$

Symmetry codes: (i) $x-1, y, z$; (ii) $-x, 1-y,-z$; (iii) $1-x, 2-y, 1-z$; (iv) $x, 1+y, z$.

H atoms were geometrically placed and their positions refined riding on appropriate N or C atoms with $d(\mathrm{~N}-\mathrm{H})=1.00$ or $d(\mathrm{C}-\mathrm{H})=1.00 \AA$. Carrier-atom-type isotropic displacement parameters were refined for H atoms.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: RC85 (Baird, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS (Watkin, Carruthers \& Betteridge, 1990). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: local routines.

We thank the National Science Foundation (DMR9214804) and the Robert A. Welch Foundation for partial financial support.

[^0]
References

Baird, P. D. (1985). RC85 User Guide. University of Oxford, England. Böschen, I., Buss, B. \& Krebs, B. (1974). Acta Cryst. B30, 48-56.

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kunz, M. \& Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. University of Göttingen, Germany.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1996). C52, 1077-1080

$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{Co}_{2} \mathrm{Mo}_{6} \mathrm{O}_{12}(\mathrm{OH})_{4}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, a New One-Dimensional Molybdenum Phosphate

Philip Lightfoot and Diane Masson

School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland. E-mail: pl@st-and.ac.uk
(Received 16 August 1995; accepted 16 November 1995)

Abstract

The title compound, bis(tetramethylammonium) di-cobaltio- μ-dihydrogenphosphato- μ-bis(hydrogenphos-phato)- μ_{6}-phosphato-tetrahydroxycyclohexamolybdate($M o-M o$) pentahydrate, was synthesized hydrothermally and crystallizes as a polymeric ionic complex with anionic chains, composed of $\left[\mathrm{Mo}_{6} \mathrm{O}_{12}(\mathrm{OH})_{3}\left(\mathrm{H}_{x} \mathrm{PO}_{4}\right)_{4}\right]^{n-}$ clusters held together by Co^{2+} cations running parallel to the b axis. Neighbouring chains are linked by hydrogen bonds only via intervening $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations and water molecules.

\section*{Comment}

The title compound was prepared as part of an exploratory project aimed at synthesizing molybdenum phosphates of varying dimensions. Previous work (Haushalter \& Mundi, 1992) suggested that related compounds contain the complex anion $\left[\mathrm{Mo}_{6} \mathrm{O}_{15}\left(\mathrm{HPO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{3}\right]^{5-}$ (${ }^{(} \mathrm{Mo}_{6} \mathrm{P}_{4}$ ') as a primary building unit. This anion is composed of a ring of edgesharing MoO_{6} octahedra, with Mo in the +5 oxidation state complexed with PO_{4} tetrahedra both internal and external to the ring. We have shown recently (Light-

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, including contact distances, have been deposited with the IUCr (Reference: TA1054). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

